Q1. (a)	Define	the term lattice enthalpy of dissociation.		
				(2
	(b)	Lattice enthalpy can be calculated theoretically using	g a perfect ionic m o	del.
		Explain the meaning of the term <i>perfect ionic model</i> .		
		(Extra space)		
				(1
				(1)
	(c)	Suggest two properties of ions that influence the val calculated using a perfect ionic model.	ue of a lattice enthal	ру
		Property 1		
		Property 2		
				(2
	(d)	Use the data in the table to calculate a value for the for silver chloride.	lattice enthalpy of di	ssociation
		Enthalpy change	Value / kJ mol⁻¹	
		Enthalpy of atomisation for silver	+289	

First ionisation energy for silver	+732	
Enthalpy of atomisation for chlorine	+121	
Electron affinity for chlorine	-364	
Enthalpy of formation for silver chloride	-127	
		(3)
Predict whether the magnitude of the lattice enthalpy calculated in part (d) will be less than, equal to or gre obtained from a perfect ionic model. Explain your ans	eater than the value t swer.	hat is
Explanation		
		 (2) (Total 10 marks)

Q2.The enthalpy of hydration for the chloride ion is -364 kJ mol⁻¹ and that for the bromide ion is -335 kJ mol⁻¹.

(e)

••••	
	e enthalpy of hydration for the potassium ion is −322 kJ mol ⁻¹ . The lattice halpy of dissociation for potassium bromide is +670 kJ mol ⁻¹ .
Cal	culate the enthalpy of solution for potassium bromide.
••••	
••••	
The	e enthalpy of solution for potassium chloride is +17.2 kJ mol ⁻¹ .
(i)	Explain why the free-energy change for the dissolving of potassium chloride in water is negative, even though the enthalpy change is positive.

	Compou	ınd	MgCl ₂	CaCl₂	MgO		
Q3. Thi	is table co	ntains some values of lattice diss	ociation er	nthalpies.			
						(To	tal 13 marks)
							(5)
						•••••	
		In your calculation, assume that temperature and that the specifi					
		Calculate the final temperature of					
	(ii)	A solution is formed when 5.00 g of water. The initial temperature	g of potass of the wat	ium chlorid er is 298 K	de are diss (.	solved in 2	20.0 g
							(3)
		(Extra space)					

	Write an equation, including state symbols, for the reaction that has an enthalpy change equal to the lattice dissociation enthalpy of magnesium chloride.
	Explain why the lattice dissociation enthalpy of magnesium chloride is greater than nat of calcium chloride.
	Extra space)
	Explain why the lattice dissociation enthalpy of magnesium oxide is greater than nat of magnesium chloride.
	Extra space)
	······································
r	When magnesium chloride dissolves in water, the enthalpy of solution is -155 kJ nol ⁻¹ . The enthalpy of hydration of chloride ions is -364 kJ mol ⁻¹ .

2493

2237

3889

Lattice dissociation enthalpy / kJ mol⁻¹

(Extra space)	
(3)
(e) Energy is released when a magnesium ion is hydrated because magnesium ions attract water molecules.	
Explain why magnesium ions attract water molecules. You may use a labelled diagram to illustrate your answer.	
(2)
(f) Suggest why a value for the enthalpy of solution of magnesium oxide is not found in any data books.	
	1)

Q4.Consider the following process that represents the melting of ice.

H₂O(s)	\rightarrow H ₂ O(I) $\Delta H^{\circ} = +6.03 \text{ kJ mol}^{-1}, \Delta S^{\circ} = +22.1 \text{ J K}^{-1} \text{ mol}^{-1}$	
(a)	State the meaning of the symbol $^{\circ}$ in ΔH° .	
		(1)
(b)	Use your knowledge of bonding to explain why $\Delta H^{\!\scriptscriptstyle 0}$ is positive for this process.	
		(2)
(c)	Calculate the temperature at which ΔG° = 0 for this process. Show your working.	
		(3)
(d)	The freezing of water is an exothermic process. Give one reason why the temperature of a sample of water can stay at a constant value of 0 °C when it freezes.	
		(1)
(e)	Pure ice can look pale blue when illuminated by white light. Suggest an explanation for this observation.	

		• •
		• •
(2) (Total 9 marks)		
/Total O marks	,	
(Total 9 marks)	(

Q5.Some thermodynamic data for fluorine and chlorine are shown in the table. In the table, X represents the halogen F or Cl.

	Fluorine	Chlorine
Electronegativity	4.0	3.0
Electron affinity / kJ mol-1	-348	-364
Enthalpy of atomisation / kJ mol ⁻¹	+79	+121
Enthalpy of hydration of X-(g) / kJ mol-1	-506	-364

a)	Explain the meaning of the term <i>electron affinity</i> .	
		(2)
b)	Explain why the electronegativity of fluorine is greater than the electronegativity of chlorine.	

(Ex	tra space)
	plain why the hydration enthalpy of the fluoride ion is more negative than the ration enthalpy of the chloride ion.
The	e enthalpy of solution for silver fluoride in water is −20 kJ mol⁻¹.
The	hydration enthalpy for silver ions is –464 kJ mol ⁻¹ .
(i)	Use these data and data from the table to calculate a value for the lattice enthalpy of dissociation of silver fluoride.
(ii)	Suggest why the entropy change for dissolving silver fluoride in water has a positive value.

		(1)
(iii)	Explain why the dissolving of silver fluoride in water is always a spontaneous process.	
	(Total 12 m	(2) arks)